We want to design algorithms that satisfy the following key properties.

- **Consistency**: Performance of the algorithm should improve if given good predictions.
- **Robustness**: Performance of the algorithm should degrade gracefully in case of bad predictions.
- **Independence**: The algorithm should be independent of the predictor. In particular, it should make no assumptions on the types / distribution of the predictor errors.

Competitive Ratio

\[
\text{Competitive Ratio} = \max_{x} \frac{\text{Cost}(\text{Algorithm})}{\text{Cost}(\text{Optimum})}.
\]

- For online algorithms with predictions, this is a function \(c(\eta)\) of the error \(\eta\) of the prediction.
- Algorithm is \(\beta\)-consistent: \(c(0) = \beta\).
- Algorithm is \(\gamma\)-robust: \(c(\eta) \leq \gamma, \forall \eta\)

Related Work

- Improve reserve price optimization via prediction oracles (Medina and Vassilvitskii, 2017)
- Online Caching with Predictions (Lykouris and Vassilvitskii, 2018)

Ski Rental

Problem Definition: A skier wishes to ski for an unknown number \(x\) of days. She can either rent skis for \$1 each day, or buy skis for \$6 and ski for free thereafter. When should she buy the skis?

Prediction: \(p\) — number of days the skier is predicted to ski.

For example, one can build a model using
- Weather forecasts
- Location, etc.

Naive Algorithm

- Trust the prediction completely.
 - Consistency: 1
 - Robustness: \(\infty\)

\[
\text{if } y \geq b \text{ then } \begin{cases}
\text{Buy on the first day.} \\
\text{Rent every day.}
\end{cases}
\]

Consistent and Robust Algorithms

- Hedge your bets!
 - Tradeoff consistency vs. robustness via \(\lambda\)
 - Consistency: \((1 + \lambda)\)
 - Robustness: \(1 + \frac{1}{\lambda}\)

\[
\text{if } y \geq b \text{ then } \begin{cases}
\text{Buy on day } \lfloor b/\lambda \rfloor \\
\text{Buy on day } \lceil b/\lambda \rceil
\end{cases}
\]

Main Theorem: Ski Rental

For any \(\lambda \in (0, 1)\), there is a randomized online algorithm for Ski-Rental that is \(\frac{1}{1 - e^{-\lambda}}\) robust and \(\frac{\lambda}{1 - e^{-\lambda}}\) consistent.

Using Predictions

Hedge your bets: Preferential Round-Robin (PRR): Run SPJF at \(\lambda\) capacity and RR at \((1 - \lambda)\) capacity

- Consistency: \(\frac{\lambda}{1 - \lambda}\)
 - Robustness: \(\frac{\lambda}{1 - \lambda}\)

Non-Clairvoyant Scheduling

Problem Definition: Schedule jobs of unknown length on one machine to minimize the sum of completion times. Preemption is allowed.

Prediction: Predicted length of each job. Could be from a model based on lengths of previous runs of the same job or on past jobs with similar parameters.

Best Algorithms without Predictions

- **Clairvoyant**: Shortest Job First (SJF): optimal
- **Non-clairvoyant**: Round-Robin (RR): 2-competitive in the worst case

Using Predictions

CLAIRVOYANT

- **Consistency**: 1
 - Robustness: \(\infty\)

Non-CLAIRVOYANT

- **Consistency**: 2
 - Robustness: 2

Hedge your bets: Preferential Round-Robin (PRR): Run SPJF at \(\lambda\) capacity and RR at \((1 - \lambda)\) capacity.

Using Predictions

- Consistency: \(\frac{\lambda}{1 - \lambda}\)
 - Robustness: \(\frac{\lambda}{1 - \lambda}\)

Main Theorem: Scheduling

PFR algorithm with \(\lambda \in (0, 1)\) has competitive ratio \(\min\left\{ \frac{1}{1 + \sqrt{\lambda}}, \frac{1}{1 - \sqrt{\lambda}} \right\}\).